Stage 4

 Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions (see Stage 3 progression).

Use Cuisenaire rods to support the children in refreshing their knowledge of equivalent fractions.

Calculate
$$\frac{1}{2} + \frac{1}{4}$$

$$\frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4}$$

Calculate
$$\frac{1}{2} + \frac{1}{3}$$

$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$$

 Multiply simple fractions by a whole number, writing the answer in its simplest form.

Calculate
$$1 \times \frac{1}{4}$$

1 lots of
$$\frac{1}{4} = \frac{1}{4}$$

Calculate
$$3 \times \frac{1}{4}$$

$$3 \text{ lots of } \frac{1}{4} = \frac{3}{4}$$

Calculate $3 \times \frac{2}{5}$

$$3 \times \frac{2}{5} = \frac{6}{5} = 1\frac{1}{5}$$

 Multiply simple pairs of proper fractions, writing the answer in its simplest form.

$$\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}$$

 Multiply simple pairs of proper fractions, writing the answer in its simplest form.

Calculate
$$\frac{1}{4} \times \frac{3}{5}$$

$$\frac{1}{4} \times \frac{3}{5} = \frac{3}{20}$$

Divide proper fractions by whole numbers.

Calculate
$$\frac{1}{3} \div 2$$

$$\frac{1}{3} \div 2 = \frac{1}{6}$$

Calculate
$$\frac{3}{5} \div 3$$

<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
5	5	5	5	5

$$\frac{3}{5} \div 3 = \frac{3}{15}$$

Stage 4 - Percentages

Solve problems involving the calculation of percentages.

The normal price for a tracksuit is £55.50. How much will it cost in a '20% off' sale?

In a '30% off' sale, Carl pays £21 for a shirt. How much was the shirt before the sale?

100% = ?									
£3	£3	£3	£3	£3	£3	£3	£3	£3	£3
									

Stage 4 - Ratio

 Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples (see Stage 2 progression).

In a survey, the ratio of the number of people who preferred 'ready-salted' to 'cheese and onion' crisps was 5:3. Forty-six more people preferred ready-salted. How many people took part in the survey?

Express missing number problems algebraically.

$$x + 5 = 20$$
, so $x = ?$

20		
X	5	

$$x = 35 + 25$$
, so $x = ?$

$$6y - 2y = 4y$$

V	V	V	V	
y	7)	,	

What is 2n + 9 when n = 22?

$$3x - 15 = 21$$

X	X	X
21	15	

$$5x - 4 = 11$$

X	X	X	X	X
		4		

$$4x + 9 = 29$$

Stage 4 – Advanced Algebra

$$3y + 7 = y + 13$$

У	у	y	7	
У	13			

$$2y + 7 = 13$$

y	У	7
13		

$$2y = 6$$
$$y = 3$$

Stage 4 – Advanced Algebra

$$3x + 4y = 30$$

Using a systematic approach:

If x = 1 then 3x = 3. 30 - 3 = 27 which is not a multiple of 4.

If x = 2 then 3x = 6. 30 - 6 = 24. $24 \div 4 = 6$

If x = 3 then 3x = 9. 30 - 9 = 21 which is not a multiple of 4.

If x = 4 then 3x = 12. 30 - 12 = 18 which is not a multiple of 4.

etc

